SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>ACETONITRILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Name</td>
<td>acetonitrile</td>
</tr>
<tr>
<td>Synonyms</td>
<td>C2-H3-N, CH3-CN, Hewlett-Packard PTH Analysis Solvent C, Hewlett-Packard Protein Sequencing Reagent L1, RCRA Waste No. U003, cyanomethane, ethanenitrile, ethyl nitrile, methane carbonitrile, methyl cyanide</td>
</tr>
<tr>
<td>Proper shipping name</td>
<td>ACETONITRILE</td>
</tr>
<tr>
<td>Chemical formula</td>
<td>C2H3N</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>20040320</td>
</tr>
<tr>
<td>CAS number</td>
<td>75-05-8</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses
Reagent. Used in the manufacture of Vitamin B, pharmaceuticals, perfumes, synthetic fibres and other chemicals including acetonophene and acetamidine. As a solvent to remove tars, phenols, and colouring matter from petroleum hydrocarbons not soluble in acetonitrile. Extracting fatty acids from fish liver oils and animal and vegetable oils. Can be used to recrystallise steroids.

Details of the supplier of the safety data sheet

Registered company name: Bio-Strategy Pty Ltd
Address: Unit 1A/60 Enterprise Place QLD 4173 Australia
Telephone: 1300 727 696
Fax: Not Available
Website: www.bio-strategy.com.au
Email: csaus@bio-strategy.com

Emergency telephone number

Association / Organisation: Not Available
Emergency telephone numbers: 07 3009 4188
Other emergency telephone numbers: Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

| HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. |

Poisons Schedule
Not Applicable

Classification

<table>
<thead>
<tr>
<th>Classification</th>
<th>Flammable Liquid Category 2, Acute Toxicity (Oral) Category 4, Acute Toxicity (Dermal) Category 4, Acute Toxicity (Inhalation) Category 4, Eye Irritation Category 2A, Reproductive Toxicity Category 1B*</th>
</tr>
</thead>
</table>

Label elements

<table>
<thead>
<tr>
<th>Hazard pictogram(s)</th>
<th>SIGNAL WORD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DANGER</td>
</tr>
</tbody>
</table>

Continued...
Hazard statement(s)

- **H225**: Highly flammable liquid and vapour.
- **H302**: Harmful if swallowed.
- **H312**: Harmful in contact with skin.
- **H332**: Harmful if inhaled.
- **H319**: Causes serious eye irritation.
- **H360**: May damage fertility or the unborn child.
- **AUH032**: Contact with acid liberates very toxic gas.

Supplementary statement(s)

Not Applicable

Precautionary statement(s) Prevention

- **P201**: Obtain special instructions before use.
- **P210**: Keep away from heat/sparks/open flames/hot surfaces. - No smoking.
- **P233**: Keep container tightly closed.
- **P271**: Use only outdoors or in a well-ventilated area.

Precautionary statement(s) Response

- **P308+P313**: IF exposed or concerned: Get medical advice/attention.
- **P363**: Wash contaminated clothing before reuse.
- **P370+P378**: In case of fire: Use water spray/fog for extinction.
- **P305+P351+P338**: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

Precautionary statement(s) Storage

- **P403+P235**: Store in a well-ventilated place. Keep cool.
- **P405**: Store locked up.

Precautionary statement(s) Disposal

- **P501**: Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% [weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-05-8</td>
<td>>=99</td>
<td>acetonitrile</td>
</tr>
</tbody>
</table>

Mixtures

See section above for composition of Substances

SECTION 4 FIRST AID MEASURES

Description of first aid measures

- **Eye Contact**: If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Seek medical attention without delay; if pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

- **Skin Contact**: If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear.
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

- **Inhalation**: If fumes or combustion products are inhaled, remove from contaminated area.
 - Lay patient down. Keep warm and rested.
 - Prophylactic antibiotics or anti biotics may be necessary.
 - Prophylactic artificial respiration if respirations are depressed.
 - Transport to hospital, or doctor.

- **Ingestion**: IMPORTANT: ESTABLISH A FIRST AID PLAN BEFORE WORKING WITH CYANIDES. ANTIDOTES SHOULD BE AVAILABLE ON SITE.
 - Prompt response in an emergency is vital.
 - All workers are to be trained and refreshed trained in procedures.
 - Rescuers must have the protection of breathing apparatus where there is the potential of exposure to airborne cyanide.
 - Use the buddy system and avoid becoming a casualty.

In all cases of cyanide exposure get medical help urgently after administering first aid.
For cyanide poisonings by any route:
 - Contact Poisons Advisory Centre or a doctor.
 - Seek immediate medical attention.
 - Place casualty in coma position.
 - Give oxygen when available.
 - Consider external cardiac compression, mechanical resuscitation and use of antidote kit.

If breathing stops mouth-to-mouth resuscitation (also called expired air resuscitation - EAR) may be given only as a last resort. Should such resort prove necessary, first wash the casualty's mouth and lips. A first aid attendant giving EAR must not inhale the expired air of the casualty.

US Practice as employed by DuPont:

FIRST AID Swallowed / Inhaled / Skin Contact

- If no symptoms, no treatment is necessary; decontaminate patient.
- If conscious but with symptoms present (nausea, shortness of breath, dizziness) give oxygen.
- If unconscious but breathing, give oxygen and amyl nitrite by means of a respirator. To give amyl nitrite, break an ampoule in a cloth and insert into lip of mask for 15 seconds, then take away for 15 seconds. Repeat 5-6 times.

First Aid Supplies for cyanide poisoning should be conveniently placed throughout cyanide areas and should be IMMEDIATELY accessible at all times. They should be routinely inspected (typically daily) by people who would use them in an emergency. The total numbers of any item listed below should be adequate to handle the largest number of exposure cases that can reasonably be anticipated, taking into account that some supplies may be wasted, destroyed or inaccessible during an emergency.

Oxygen Resuscitators - The Flynn Series Ill model from O-Two Systems has been found satisfactory, being lightweight, rugged and easy to use.

Amyl Nitrite Ampoules - One box of one dozen ampoules per station is usually satisfactory. Stations should be located throughout the cyanide area.

CAUTION: Amyl nitrite is not stable and must be replaced every 1 to 2 years. Store in the original dated box away from heat. (can be stored with the

Date on the box. Also avoid excessive cold storage which may limit the vapour pressure and reduce its evaporating property. Kits and amyl nitrite should be

Avoid storage on vehicles where cabin temperatures can reach 60 deg. C. Storage in high temperature climates may require replacement before the expiry

date on the box. Also avoid excessive cold storage which may limit the vapour pressure and reduce its evaporating property. Kits and amyl nitrite should be

Access and staggered replacements of the amyl nitrite to ensure that the agent is always available.

A set of cyanide first aid instructions should be located at each amyl nitrite storage location. Workers should be fully trained since in real emergency situations

there will be insufficient time to "read the book".

Notes on the use of amyl nitrite:

- AN is highly volatile and flammable - do not smoke or use around a source of ignition.
- If treating patient in a windy or draughty area provide some shelter or protection (shirt, wall, drum, cupped hand etc.) to prevent amyl nitrite vapour from being blown away. Keep ampoule upwind from the nose, the objective is to get amyl nitrite into the patient's lungs.
- Rescuers should avoid AN inhalation to avoid becoming dizzy and losing competence.
- Lay the patient down. Since AN dilates blood vessels and lowers blood pressure, lying down will help keep the patient conscious.
- DO NOT overuse - excessive use might put the patient into shock.
- Vasodilatory effects of amyl nitrate may promote fatal cardiac arrhythmias (particularly if the patient is not really poisoned by cyanide).
- The role of amyl nitrate as a competitive inducer of methaemoglobin in the blood stream is highly variable and, alone, may produce levels of methaemoglobin as low as 5% only.

Experience at DuPont plants has not shown any serious after-effects from treatment with amyl nitrite.

Indication of any immediate medical attention and special treatment needed

For cyanide intoxication (and for certain nitriles which produce cyanide ion)

- Signs symptoms of acute cyanide poisoning reflect cellular hypoxia and are often non-specific.
- Cyanosis may be a late finding.
- A bradycardic, hypertensive and tachypneic patient suggests poisoning especially if CNS and cardiovascular depression subsequently occurs.
- Immediate attention should be directed towards assisted ventilation, administration of 100% oxygen, insertion of intravenous lines and institution of cardiac monitoring.
- Obtain an arterial blood gas immediately and correct any severe metabolic acidosis (pH below 7.15).
- Mildly symptomatic patients generally require supportive care alone. Nitriles should not be given indiscriminately - in all cases of moderate to severe poisoning, they should be given in conjunction with thiosulfate. As a temporizing measure supply amyl nitrite perles (0.2ml inhaled 30 seconds every minute) until intravenous lines for sodium nitrite are established. 10 ml of a 3% solution is administered over 4 minutes to produce 20% methaemoglobin in adults. Follow directly with 50 ml of 25% sodium thiosulfate, at the same rate, IV. If symptoms reappear or persist within 1/2-1 hour, repeat nitrite and thiosulfate at 50% of initial dose. As the mode of action involves the metabolic conversion of the thiosulfate to thiocyanate, renal failure may enhance thiocyanate toxicity.
- Methylene blue is not an antidote. [Ellenhorn and Barceloux: Medical Toxicology]

If amyl nitrite intervention is employed then Medical Treatment Kits should contain the following:

- One box containing one dozen amyl nitrite ampoules
- Two sterile ampoules of sodium nitrite solution (10 mL of a 3% solution in each)
- Two sterile ampoules of sodium thiosulfate solution (50 mL of a 25% solution in each)
- One 10 mL sterile syringe. One 50 mL sterile syringe. Two sterile intravenous needles. One tourniquet.
- One dozen gauze pads.
- Latex gloves
- A "Biohazard" bag for disposal of bloody/contaminated equipment.
- A set of cyanide instructions on first aid and medical treatment.

Notes on the use of amyl nitrite:

- AN is highly volatile and flammable - do not smoke or use around a source of ignition.
- If treating patient in a windy or draughty area provide some shelter or protection (shirt, wall, drum, cupped hand etc.) to prevent amyl nitrite vapour from being blown away. Keep ampoule upwind from the nose, the objective is to get amyl nitrite into the patient's lungs.
- Rescuers should avoid AN inhalation to avoid becoming dizzy and losing competence.
- Lay the patient down. Since AN dilates blood vessels and lowers blood pressure, lying down will help keep patient conscious.
- DO NOT overuse - excessive use might put the patient into shock. Experience at DuPont plants has not shown any serious after-effects from treatment with amyl nitrite.

ADDITIONAL NOTES:

- Major medical treatment procedures may vary e.g. US (FDA method as recommended by DuPont) uses amyl nitrite as a methaemoglobin generator, followed by treatment with sodium nitrite and then sodium thiosulfate.
MODES OF ACTION: Amyl nitrite (AN) reacts with haemoglobin (HB) to form about 5% methaemoglobin (MHB). Sodium nitrite (NaNO2) reacts with haemoglobin to form approximately 20-30% methaemoglobin. Methaemoglobin attracts cyanide ions (CN) from tissue and binds with them to become cyanmethaemoglobin (CNMHB). Sodium thiosulfate (Na2S2O3) converts cyanmethaemoglobin to thiocyanate (HSCN) which is excreted by the kidneys. i.e. AN + HB = MHB NaNO2 + HB = MHB CN + MHB = CNMHB Na2S2O3 + CNMHB + O2 = HSCN

- The administration of the antidote salts is intravenous in normal saline, Ringers lactate or other available IV fluid.
- European practice may use 4-dimethylaminophenol (DMAP) as a methaemoglobin generator. Also hydroxycobalamin (Vitamin B12a) is used. Hydroxycobalamin works by reacting with cyanide to form cyanocobalamin (Vitamin B12) which is excreted in the urine.
- European and Australian NOHSC (ASCC) propose dicobalt edetate (Kelocyanor) as antidote. This acts by chelating cyanide to form stable cobalticyanide, which is excreted in the urine. In all cases hyperbaric therapy may increase the efficiency of a cyanide antidote kit.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- Water spray or fog
- Foam
- Dry chemical powder
- BCF (where regulations permit)

Special hazards arising from the substrate or mixture

<table>
<thead>
<tr>
<th>Fire Incompatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result</td>
</tr>
</tbody>
</table>

Advice for firefighters

<table>
<thead>
<tr>
<th>Fire Fighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert Fire Brigade and tell them location and nature of hazard.</td>
</tr>
<tr>
<td>May be violently or explosively reactive.</td>
</tr>
<tr>
<td>Wear full body protective clothing with breathing apparatus.</td>
</tr>
<tr>
<td>Prevent, by any means available, spillage from entering drains or water course.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fire/Explosion Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid and vapour are highly flammable.</td>
</tr>
<tr>
<td>Severe fire hazard when exposed to heat, flame and/or oxidisers.</td>
</tr>
<tr>
<td>Vapour may travel a considerable distance to source of ignition.</td>
</tr>
<tr>
<td>Heating may cause expansion or decomposition leading to violent rupture of containers.</td>
</tr>
</tbody>
</table>

Combustion products include:
- carbon dioxide (CO2)
- nitrogen oxides (NOx)
- other pyrolysis products typical of burning organic material.

HAZCHEM

<2YE

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

<table>
<thead>
<tr>
<th>Minor Spills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental hazard - contain spillage.</td>
</tr>
<tr>
<td>Remove all ignition sources.</td>
</tr>
<tr>
<td>Clean up all spills immediately.</td>
</tr>
<tr>
<td>Avoid breathing vapours and contact with skin and eyes.</td>
</tr>
<tr>
<td>Control personal contact with the substance, by using protective equipment.</td>
</tr>
<tr>
<td>Wipe up and absorb small quantities with a cloth or paper towel/Allow to evaporate in a fume hood and burn the paper.</td>
</tr>
<tr>
<td>Flush area with large quantities of water.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Major Spills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental hazard - contain spillage.</td>
</tr>
<tr>
<td>DO NOT touch the spill material</td>
</tr>
</tbody>
</table>

For alkyl nitriles:
- For residue:
 - Add alkaline hypochlorite solution to spill to produce cyanate.
 - Neutralise liquid, and absorb with sawdust.
 - Collect solid residues and seal in drums for disposal.
 - Wash spill area with large quantities of water.
 - Clear area of personnel and move upwind.
 - Alert Fire Brigade and tell them location and nature of hazard.
 - May be violently or explosively reactive.
 - Wear full body protective clothing with breathing apparatus.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

<table>
<thead>
<tr>
<th>Safe handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containers, even those that have been emptied, may contain explosive vapours.</td>
</tr>
<tr>
<td>Do NOT cut, drill, grind, weld or perform similar operations on or near containers.</td>
</tr>
<tr>
<td>Avoid all personal contact, including inhalation.</td>
</tr>
<tr>
<td>Wear protective clothing when risk of exposure occurs.</td>
</tr>
<tr>
<td>Use in a well-ventilated area.</td>
</tr>
</tbody>
</table>

Continued...
ACETONITRILE

Chemwatch: 1648
Version No: 7.1.1.1
Page 5 of 10
Issue Date: 13/09/2015
Print Date: 16/08/2017

 Conditions for safe storage, including any incompatibilities

Suitable container
- Glass container is suitable for laboratory quantities
- Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks.
- For low viscosity materials: (i) Drums and jerry cans must be of the non-removable head type; (ii) Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt, (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt.

Storage incompatibility
- Acetonitrile
 - forms cyanide gas on contact with steam
 - reacts violently with oxidisers such as chlorine, bromine, fluoride; with chlorousulfonic acid, oleum or sulfuric acid
 - is incompatible with water (especially if acid or alkaline), acids, caustics, nitrating agents, indium, nitrogen tetroxide, sulfur trioxide, iron(III) salts of perchlorate, nitrogen fluoride compounds
 - attacks most rubber and plastics
 - may accumulate electrical charges, causing ignition of vapours
 - Contact with acids produces toxic fumes
 - Nitriles may polymerise in the presence of metals and some metal compounds.
 - They are incompatible with acids; mixing nitriles with strong oxidising acids can lead to extremely violent reactions.
 - Nitriles are generally incompatible with other oxidising agents such as peroxides and epoxides.
 - The combination of bases and nitriles can produce hydrogen cyanide.
 - The covalent cyano group is endothermic and many organic nitriles are reactive under certain conditions; N-cyano derivatives are reactive or unstable.
 - The majority of endothermic compounds are thermodynamically unstable and may decompose explosively under various circumstances of initiation.
 - Many but not all endothermic compounds have been involved in decompositions, reactions and explosions and, in general, compounds with significantly positive values of standard heats of formation, may be considered suspect on stability grounds.

WARNING:
- May decompose violently or explosively on contact with other substances.
- This substance, or one of its components, is one of the relatively few compounds which are described as "endothermic" i.e. heat is absorbed into the compound, rather than released from it, during its formation.
- The majority of endothermic compounds are thermodynamically unstable and may decompose explosively under various circumstances of initiation.
- Many but not all endothermic compounds have been involved in decompositions, reactions and explosions and, in general, compounds with significantly positive values of standard heats of formation, may be considered suspect on stability grounds.
- Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INVENTORY DATA

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
<td>acetonitrile</td>
<td>Acetonitrile</td>
<td>67 mg/m³ / 40 ppm</td>
<td>101 mg/m³ / 60 ppm</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetonitrile</td>
<td>Acetonitrile</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>acetonitrile</td>
<td>Original IDLH</td>
<td>Revised IDLH</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Exposure controls

Appropriate engineering controls
Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:
- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment.

Personal protection
- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task.

Eye and face protection
- Wear safety footwear or safety gumboots, e.g. Rubber
- The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where

Continued...
ACETONITRILE

Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computer-generated selection: ACETONITRILE

<table>
<thead>
<tr>
<th>Material</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTYL</td>
<td>A</td>
</tr>
<tr>
<td>BUTYL/NEOPRENE</td>
<td>A</td>
</tr>
<tr>
<td>CPE</td>
<td>A</td>
</tr>
<tr>
<td>PE/EVALPE</td>
<td>A</td>
</tr>
<tr>
<td>PVA</td>
<td>A</td>
</tr>
<tr>
<td>SARANEX-23</td>
<td>A</td>
</tr>
<tr>
<td>NEOPRENE</td>
<td>B</td>
</tr>
<tr>
<td>TEFILON</td>
<td>B</td>
</tr>
<tr>
<td>NATURAL RUBBER</td>
<td>C</td>
</tr>
<tr>
<td>NATURAL+NEOPRENE</td>
<td>C</td>
</tr>
<tr>
<td>NITRILE</td>
<td>C</td>
</tr>
<tr>
<td>VITON/NEOPRENE</td>
<td>C</td>
</tr>
</tbody>
</table>

* CPI - Chemwatch Performance Index
A: Best Selection
B: Satisfactory; may degrade after 4 hours continuous immersion
C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

TABLE 25: ACETONITRILE RESPIRATORY PROTECTION FACTORS

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 5 x ES</td>
<td>A-AUS / Class 1</td>
<td>-</td>
<td>A-PAPR-AUS / Class 1</td>
</tr>
<tr>
<td>up to 25 x ES</td>
<td>Air-line*</td>
<td>A-2</td>
<td>A-PAPR-2</td>
</tr>
<tr>
<td>up to 50 x ES</td>
<td>-</td>
<td>A-3</td>
<td>-</td>
</tr>
<tr>
<td>50+ x ES</td>
<td>-</td>
<td>Air-line**</td>
<td>-</td>
</tr>
</tbody>
</table>

* - Full-face
A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The respirator should be considered as not functioning properly, that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

Seventh printing 12/09/2015

6.1.1.1

See Other protection below
SECTION 10 STABILITY AND REACTIVITY

<table>
<thead>
<tr>
<th>Reactivity</th>
<th>See section 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical stability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presence of elevated temperatures.</td>
</tr>
<tr>
<td></td>
<td>Unstable in the presence of incompatible materials.</td>
</tr>
<tr>
<td></td>
<td>Product is considered stable.</td>
</tr>
<tr>
<td></td>
<td>Hazardous polymerisation will not occur.</td>
</tr>
</tbody>
</table>

Possibility of hazardous reactions	**See section 7**
Conditions to avoid	**See section 7**
Incompatible materials	**See section 7**
Hazardous decomposition products	**See section 5**

Flammability

<table>
<thead>
<tr>
<th>Flammability</th>
<th>HIGHLY FLAMMABLE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>16.0</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>4.4</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>13.3 @ 27 deg.C</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Miscible</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Oxidising properties

<table>
<thead>
<tr>
<th>Oxidising properties</th>
<th>Not Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Tension (dyn/cm or mN/m)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>100</td>
</tr>
<tr>
<td>Gas group</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH as a solution (1%)</td>
<td>Not available.</td>
</tr>
<tr>
<td>VOC g/L</td>
<td>792.8</td>
</tr>
</tbody>
</table>

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

- **Inhaled**
 - Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful.
 - The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation of vapours, fumes or aerosols, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
 - The smell of acetonitrile does not give enough warning of exposure. The gas is highly toxic, and inhaling it can cause loss of consciousness.

- **Ingestion**
 - Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
 - Nitrile poisoning exhibits similar symptoms to poisoning due to hydrogen cyanide. The substances irritate the eyes and skin, and are absorbed quickly and completely through the skin.
 - Cyanide poisoning can cause increased saliva output, nausea without vomiting, anxiety, confusion, vertigo, dizziness, stiffness of the lower jaw, convulsions, spasm, paralysis, coma and irregular heartbeat, and stimulation of breathing followed by failure. Often the skin becomes cyanosed (blue-grey), and this is often delayed.

- **Skin Contact**
 - Skin contact with the material may be harmful; systemic effects may result following absorption.
 - There is evidence that material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Severe inflammation may be expected with pain.
 - Substrate accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.
 - There is some evidence from animal testing that exposure to this material may result in toxic effects to the unborn baby.
 - Chronic exposure to cyanides and certain nitriles may result in interference to iodine uptake by thyroid gland and its consequent enlargement. This occurs following metabolic conversion of the cyanide moiety to thiocyanate.

- **Eye**
 - There is some evidence from animal testing that exposure to this material may result in toxic effects to the unborn baby.
 - Chronic exposure to cyanides and certain nitriles may result in interference to iodine uptake by thyroid gland and its consequent enlargement. This occurs following metabolic conversion of the cyanide moiety to thiocyanate.

TOXICITY

- **Dermal (rabbit) LD50:** 980 mg/kg
- **Inhalation (rat) LC50:** 17100 ppm/4hr
- **Inhalation (rat) LC50:** 19950 ppm/4hr
- **Oral (rat) LD50:** <2000 mg/kg

IRRITATION

- **Eye (rabbit):** 20 mg (open)-SEVERE
- **Skin (rabbit):** 500 mg (open)-mild

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.
2. Value obtained from manufacturer’s SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

ACETONITRILE

- **Acute Toxicity:** ✅
- **Carcinogenicity:** 📌
- **Skin Irritation/Corrosion:** 📌
- **Reproductivity:** ✅
- **Serious Eye Damage/Irritation:** ✅
- **STOT - Single Exposure:** 📌

Continued...
SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetonitrile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>>100mg/L</td>
<td>4</td>
</tr>
<tr>
<td>NOEC</td>
<td>24</td>
<td>Crustacea</td>
<td>0.00001mg/L</td>
<td>4</td>
</tr>
</tbody>
</table>

Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicty 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/or functioning of natural ecosystems.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetonitrile</td>
<td>HIGH (Half-life = 360 days)</td>
<td>HIGH (Half-life = 541.29 days)</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetonitrile</td>
<td>LOW (BCF = 0.4)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetonitrile</td>
<td>LOW (KOC = 4.5)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.
- Otherwise:
 - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
 - Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
- A Hierarchy of Controls seems to be common - the user should investigate:
 - Reduction
 - Reuse
 - Recycling
 - Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers.

SECTION 14 TRANSPORT INFORMATION

Legend: – Data available but does not fill the criteria for classification
– Data available to make classification
– Data Not Available to make classification

Chemwatch: 1648
Version No: 7.1.1.1
ACETONITRILE
Page 8 of 10
Issue Date: 13/09/2015
Print Date: 16/08/2017

Continued...
Labels Required

Marine Pollutant: NO
HAZCHEM: <2YE

Land transport (ADG)

UN number: 1648
UN proper shipping name: ACETONITRILE
Transport hazard class(es):
- Class: 3
- Subrisk: Not Applicable
Packing group: II
Environmental hazard: Not Applicable
Special precautions for user:
- Special provisions: Not Applicable
- Limited quantity: 1 L

Air transport (ICAO-IATA / DGR)

UN number: 1648
UN proper shipping name: Acetonitrile
Transport hazard class(es):
- ICAO/IATA Class: 3
- ICAO / IATA Subrisk: Not Applicable
- ERG Code: 3L
Packing group: II
Environmental hazard: Not Applicable
Special precautions for user:
- Special provisions: Not Applicable
 - Cargo Only Packing Instructions: 364
 - Cargo Only Maximum Qty / Pack: 60 L
 - Passenger and Cargo Packing Instructions: 363
 - Passenger and Cargo Maximum Qty / Pack: 5 L
 - Passenger and Cargo Limited Quantity Packing Instructions: Y341
 - Passenger and Cargo Limited Maximum Qty / Pack: 1 L

Sea transport (IMDG-Code / GGVSee)

UN number: 1648
UN proper shipping name: ACETONITRILE
Transport hazard class(es):
- IMDG Class: 3
- IMDG Subrisk: Not Applicable
Packing group: II
Environmental hazard: Not Applicable
Special precautions for user:
- EMS Number: F-E, S-D
- Special provisions: Not Applicable
- Limited Quantities: 1 L

Transport in bulk according to Annex II of MARPOL and the IBC code

Source: IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk
Product name: Acetonitrile (Acetonitrile (Low purity grade))
Pollution Category: Z: Y
Ship Type: 2/3

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

ACETONITRILE (75-05-8) IS FOUND ON THE FOLLOWING REGULATORY LISTS
Australia Exposure Standards
Australia Hazardous Substances Information System - Consolidated Lists
Australia Inventory of Chemical Substances (AICS)

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>N (acetonitrile)</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>Y</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>Y</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines - PiCCS</td>
<td>Y</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Y</td>
</tr>
</tbody>
</table>

Legend:
Y = All ingredients are on the inventory
N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information
Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations
PC – TWA: Permissible Concentration-Time Weighted Average
PC – STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit,
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.
TEL (+61 3) 9572 4700.